CH 16 PROBABILITY MODELS GUIDE

Bernoulli Trials - binary trials that measure the outcome

Conditions to be a Bernoulli Trial:

- 1) Two possible outcomes (success and failure)
- 2) Probability of success is constant (same chance every time)
- 3) Trials are independent

10% Condition – exception to 3rd condition of Bernoulli Trials

• If trials are not independent (sampling without replacement), then it is ok to proceed with Bernoulli Trials as long as the random sample is smaller than 10% of the population.

<u>Geometric Probability Models</u> – Used to model the probability of an event until the first success occurs (order matters)

Notation: Geom(p)

• Means the probability of success (p) for a geometric probability model

Variables	Formulas	Purpose of Formula
p=probability of success	$P(X = x) = q^{x-1}p$	Probability of Geometric Event
q = probability of failure q= 1- p (complement rule)	E(X) = $\frac{1}{p}$	Expected Value (mean/center) of Geometric Event
<i>X</i> = number of trials until 1 st success	$SD(X) = \sqrt{\frac{q}{p^2}}$	Standard Deviation (spread) of Geometric Event

Calculator TI-83 and 84

Under 2^{ND} **DISTR** button, use the following to help you:

p=defines the probability of the model (success)

x = number of trials UNTIL success

Button	Purpose	Meaning
Geometpdf(p, x)	Probability of Individual Outcome (1 Event)	Probability Density Function
Geometcdf(p, x)	Probability of several outcomes (sum)	Cumulative Density Function
	-When the success (event) can happen on or before the last trial	

Binomial Probability Models - chance of an overall outcome, regardless of the order it occurs

Variables	Formulas	Purpose of Formula	
<i>p= probability of success</i>	$P(\mathbf{X} = \mathbf{x}) = {}_{n}C_{x}p^{x}q^{n-x}$	Probability of Binomial Event	
q=probability of failure	${}_{n}C_{x} = \frac{n!}{x!(n-x)!}$	X successes in n trials	
X= number of successes	E(X) = np	Expected Value (mean/center) of Binomial Event	
n = number of trials	$SD(X) = \sqrt{npq}$	Standard Deviation (spread) of Binomial Event	

Calculator TI-83 and 84

Under **2ND DISTR** button, use the following to help you:

Button	Purpose	Meaning
Binompdf(n,p,x)	Probability of Individual Outcome (1 Event from number of trials)	Probability Density Function
Binomcdf(n,p,x)	Probability of several outcomes (sum)	Cumulative Density Function
	-Total successes x or fewer based on number of trials	

Success/Failure Condition: binomial model is approximately Normal if we expect at least 10 successes and 10 failures.

Tips:

- Use your calculator to find most answers
- Check your conditions to see if something applies
- Geometric and Binomial are different
 - Geometric probability of when first success occurs (order matters)
 - Binomial probability of any successes within the set amount of trials (order doesn't matter)
- Use the Normal Model if the success/failure condition applies to continuous random variables to find the chance
 of the event

