CH 16 PROBABILITY MODELS GUIDE

Bernoulli Trials - binary trials that measure the outcome

Conditions to be a Bernoulli Trial:

1) Two possible outcomes (success and failure)
2) Probability of success is constant (same chance every time)
3) Trials are independent

10\% Condition - exception to $3^{\text {rd }}$ condition of Bernoulli Trials

- If trials are not independent (sampling without replacement), then it is ok to proceed with Bernoulli Trials as long as the random sample is smaller than 10% of the population.

Geometric Probability Models - Used to model the probability of an event until the first success occurs (order matters)
Notation: Geom(p)

- Means the probability of success (p) for a geometric probability model

Variables	Formulas	Purpose of Formula
$p=$ probability of success	$\mathbf{P}(\mathbf{X}=\mathbf{x})=\mathbf{q}^{\mathbf{x - 1}} \mathbf{p}$	Probability of Geometric Event
$q=$ probability of failure $q=1-p$ (complement rule)	$\mathbf{E}(\mathbf{X})=\frac{1}{p}$	Expected Value (mean/center) of Geometric Event
$X=$ number of trials until 1 ${ }^{\text {st }}$ success	$\mathbf{S D}(\mathbf{X})=\sqrt{\frac{q}{p^{2}}}$	Standard Deviation (spread) of Geometric Event

Calculator TI-83 and 84

Under $2^{\text {ND }}$ DISTR button, use the following to help you:
$p=$ defines the probability of the model (success)
$x=$ number of trials UNTIL success

Button	Purpose	Meaning
Geometpdf $\mathbf{p}, \mathbf{x})$	Probability of Individual Outcome (1 Event)	Probability Density Function
Geometcdf $\mathbf{p}, \mathbf{x})$	Probability of several outcomes (sum) -When the success (event) can happen on or before the last trial	Cumulative Density Function

Binomial Probability Models - chance of an overall outcome, regardless of the order it occurs (\# of successes in specified \#of trials- Binom(n,p)is the notation)

Variables	Formulas	Purpose of Formula
$p=$ probability of success	$P(\mathrm{X}=\mathrm{x})={ }_{n} C_{x} p^{x} q^{n-x}$	Probability of Binomial Event
$q=$ probability of failure	${ }_{n} C_{x}=\frac{n!}{x!(n-x)!}$	X successes in n trials
$X=$ number of successes	$\mathrm{E}(\mathrm{X})=\mathrm{np}$	
$n=$ number of trials	$\mathbf{S D}(\mathbf{X})=\sqrt{n p q}$	Expected Value (mean/center) of Binomial Event

Calculator TI-83 and 84

Under $\mathbf{2}^{\text {ND }}$ DISTR button, use the following to help you:

Button	Purpose	Meaning
Binompdf($\mathbf{n}, \mathbf{p}, \mathbf{x}$)	Probability of Individual Outcome (1 Event from number of trials)	Probability Density Function
Binomcdf($\mathbf{n}, \mathbf{p}, \mathbf{x})$	Probability of several outcomes (sum) -Total successes x or fewer based on number of trials	Cumulative Density Function

Success/Failure Condition: binomial model is approximately Normal if we expect at least 10 successes and 10 failures.
Means: $\quad n p \geq 10 \quad n q \geq 10$

Tips:

- Use your calculator to find most answers
- Check your conditions to see if something applies
- Geometric and Binomial are different
- Geometric - probability of when first success occurs (order matters)
- Binomial - probability of any successes within the set amount of trials (order doesn't matter)
- Use the Normal Model if the success/failure condition applies to continuous random variables to find the chance of the event

Example Diagram of Bernoulli Trials

