Ch. 19 Testing Hypotheses about Proportions Reference Sheet

Hypothesis: model adopted temporarily

Starting Hypothesis: NULL HYPOTHESIS	ALTERNATIVE HYPOTHESIS
Notation:	Plausible if you reject the null hypothesis (H_0)
H ₀ : parameter= hypothesized value	Notation:
Example:	H _A : parameter= alternative value
H ₀ : p = 0.20	(use <, >, or ≠)
(null hypothesis has a parameter of 20%)	Example:
	H _A : p < 0.20
	(alternative hypothesis has a parameter less than 20%)

Process for Testing Hypotheses	Information
1) Hypotheses	Null Hypothesis (H_0) – skeptical claim that nothing is different about model
• State the null hypothesis	parameters
• State the alternative	
hypothesis	Same conditions as Ch. 19/7 Interval confidence intervals)
2) Model	Same conditions as Ch. 18 (2-intervalconfidence intervals)
Check the assumptions &	Independent Assumption Pandomization Condition
conditions	Kandolinization Condition
• Specify model to use to test	Sussess/Eailure Condition
interest	
	Determine if using Normal Model, tests, displays, etc.
	$p - p_0$ $p_0 q_0$
	$Z = \frac{1}{SD(n)}$ and $SD(p) = \sqrt{\frac{1}{n}}$
	D Value found from Normal Modely DRODADU ITY OF DATA IF NULL IS TRUE
	P-value: conditional probability if the null hypothesis is true
2) Mechanics	After looking at the results to the data calculation tests, determine how surprising
S) MECHANICS	the data is if the null hypothesis is true.
Complete any tests usually	Evaluate the P-value to either reject or fail to reject the null hypothesis.
hypothesis test and	
confidence interval	If the P-value is small, reject the null hypothesis. (means unlikely)
• May need to find SD, z, etc.	If the P-value is not small, fail to reject the null hypothesis (not prove it true).
	This means is is not unusual, so there is no reason to reject the null hypothesis.
	The P-value's size is determined by the context of the scenario.
4) Conclusion	to reject). This conclusion is not the and of the testing procedure, but gives an
Analyze tests to make a	action to take based on the results
formal statement about the	
null hypothesis	Effect Size: size of the effect can be determined by examining the confidence
Formal statement,	interval.
evidence, and context	
needed	Conclusion should always have P-value, null hypothesis, Z-test, and confidence
	interval, and context of the situation.

One Proportion Z-Test: sample test for a proportion to assess the null hypothesis

Hypothesis Test: burden of proof on the unusual claim (H_A need proof)

Types of Hypothesis Tests:

- 1) Two-Sided Alternative
 - a. More conservative test (rejects the null hypothesis less often)
 - b. Double the probability to find both tails of the normal model
 - c. Used when \neq (means can either be higher or lower than p)
 - d. Example: H_A : $p \neq 0.20$

2) One-Sided Alternative

- a. Less conservative test (rejects the null hypothesis more often)
- b. Only one direction for the P-value (half of the two-sided)
- c. Used when < or > (only higher OR lower)
- d. Example: H_A : p < 0.20

Calculator: 1-PropZint STAT>TESTS>1-PropZint x = # of successes n = sample size C-level = confidence level (%)	Calculates confidence intervals	1-PropZInt x:54 n:104 C-Level:.95 Calculate
Calculator: 1-PropZTest STAT>TESTS>1-PropZTest p ₀ = parameter of the null hypothesis x = # of successes n= sample size prop = which alternative hypothesis	Calculates the hypothesis test Draws the hypothesis test results via Normal Model	1-PropZTest ps:.517 x:313 n:550 propEPD <ps>ps Calculate Draw 1-PropZTest prop≠.517 z=2.444693651 p=.0144975283 A=.5690909091 n=550</ps>