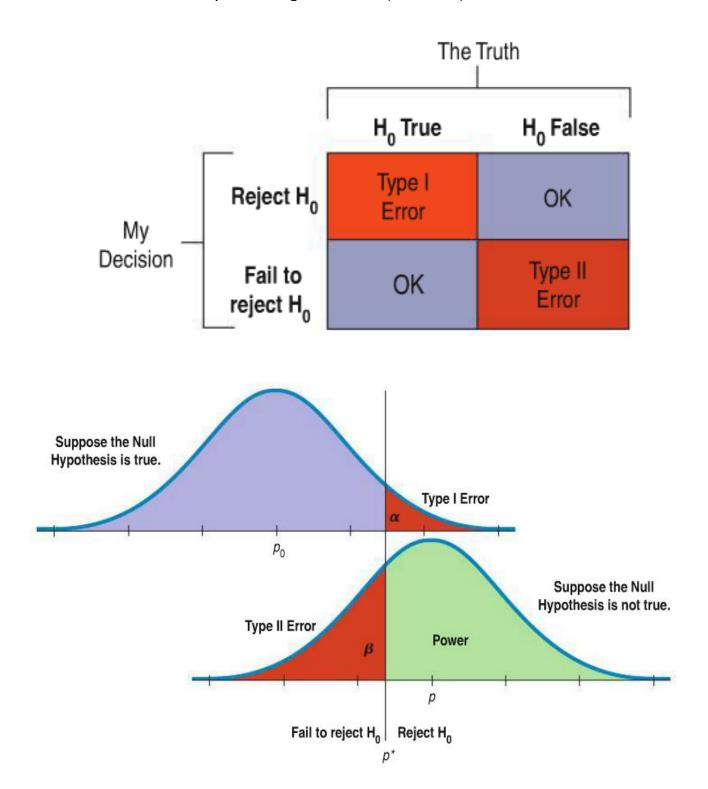
Ch. 20 More About Tests & Intervals Reference Sheet

P-Value = P(data | H₀)


The P-Value is the conditional probability of the data given the null hypothesis is true. It is NOT the probability the H_0 is true.

If a P-value is small, it means the data is rare given the null hypothesis is true; therefore reject the null hypothesis because the results are "statistically significant".

Interpreting P-Value	Details
Alpha Level	The significance level (P-Value) in which you determine if you reject the
(α)	null hypothesis. (probability of a Type I error)
	Common Alpha Levels:
	$\alpha = 0.05, 0.10, 0.01, 0.001$
	P-Value Less than α:
	Reject H_0 when test is significant at that level
	P- Value Greater than α:
	Fail to Reject H_0 when the data have failed to provide sufficient evidence to reject H_0
	Connect to Confidence Intervals:
	95% confidence interval means $\alpha = 5\%$
	<u>Confidence Intervals:</u>
	$\alpha = 100 - C\%$ (two sided)
	(100 - 2α)% (one sided)
β	The probability that a test fails to reject a false null hypothesis.
	(probability of a Type II error)
Power	A test's ability to correctly reject a false null hypothesis.
(1 – β)	Fail to reject Reject
Effect Size	The distance between p_0 (the null hypothesis parameter) and p (the actual parameter).
	The farther p_0 is from p, the greater the power of the test.

Errors: common mistakes made when hypothesis testing

- **Type I Error**: The null hypothesis is true, but we reject the null hypothesis. (not guilty found guilty)
- **Type II Error:** The null hypothesis is false, but we fail to reject the null hypothesis.(guilty found not guilty)
 - o Reduce errors by collecting more data (evidence).

